Are LED Lights Worth It?

Incandescent bulbs vs. LED bulbs

According to the Energy Star website, light-emitting diodes are “semiconductor devices that produce visible light when an electrical current is passed through them.” They rely on solid-state electroluminesence to produce light, which means they convert electricity into light through the excitation of electrons.

Incandescent lights, meanwhile, use thermal radiation to produce light, which results in a huge amount of energy loss due to heat and in turn a much shorter lifespan. The U.S. Department of Energy estimates that solid-state technology could reduce national light energy usage by up to 50 percent.

LED bulbs got their start in commercial applications such as retail signs, traffic lights and children’s toys. In part, this was because they couldn’t replicate the brightness or warm color of incandescent lights. They’re also directional by nature, meaning the light emitted is a focused beam instead of diffusing out in many directions. The good news is that improved bulb coatings have largely negated this issue. Today’s LEDs can diffuse light 360 degrees.

You’ll find two common types of LEDs in home lighting:

• High power LEDs (HPLEDs). HPLEDs produce a much stronger light than familiar miniature bulbs but generate much more heat, which means they need reliable heat sinks (devices that dissipate that heat), usually in the form of metal fins at the base.

• Organic LEDs (OLEDs). OLEDs, meanwhile, use an organic material as a semiconductor rather than a crystal structure. Organic materials produce a naturally diffuse light, and their molecules allow for more variation in performance and light quality than crystals.

LED light bulb

One LED can last up to 50,000 hours, the equivalent of 42 60-watt incandescent bulbs. (Photo by Hugh Vandivier)

Light bulb cost

While a worldwide push seeks to end the dependence on incandescent bulbs, there have been several stumbling blocks. The first is price. The lowest-priced 60-watt LED bulb on the market costs around $10, which is five times more than a comparable incandescent. High-end bulbs, meanwhile, cost upwards of $80 or more. This price is often balanced out by longevity because these bulbs can last anywhere from 10 to 15 years or more depending on use.

In addition, there has been confusion over how manufacturers label bulbs. Traditional packaging reported the brightness of a bulb using watts. LEDs, however, need far fewer watts (between six and 10) to produce the same amount of light as a 60-watt incandescent. This has led many consumers to mistakenly think that all HPLED and OLED products are “underpowered.”

New guidelines, however, are focused on reporting a bulb’s brightness in lumens, effectively standardizing the market and making all bulbs easily comparable.

It’s also worth noting that LEDs can’t actually produce white light. To achieve this color, a phosphor coating is added to the bulb. First-generation LEDs, therefore, often had the problem of too-white or too-blue light that didn’t work well in spaces like living rooms or kitchens. Fortunately, major manufacturers have virtually eliminated this problem.

Pros and cons of LED lights

LED bulbs come with many benefits, and some drawbacks:

• They use far less energy to produce light, so they aren’t hot to the touch.

• They don’t “burn out” like typical bulbs, but instead start to dim slowly.

• LEDs can go from dark to full bright within seconds.

• Because they rely on solid-state components, LEDs aren’t easily damaged or broken and aren’t subject to failure due to constant switching.

• They don’t contain mercury like fluorescent bulbs. However, some LEDs may contain metals such as lead, nickel or copper, meaning you should handle broken lights with caution.

• Over time, LEDs can begin to change color due to temperature variations and age.

• Some newer bulbs may not work with older dimmer switches, instead refusing to turn on altogether or remaining very dim.

If you’re looking to switch over to LEDs but can’t make them work in existing sockets, it may be worth hiring an electrician to update your wiring and fixtures to help “future proof” your home.

 

https://www.angieslist.com/articles/are-led-lights-worth-it.htm

Advertisements

What Are the Signs of Home Electrical Problems?

When does it make sense to replace an emergency generator system?

Age

As equipment gets older, the potential for parts failures increases. The older the generator the more difficult it may be to source replacement parts. Some manufacturers go out of business. Some manufactures will only continue to produce spare parts for a period of time. When their parts inventory is exhausted it may be impossible to repair the unit. Or, retrofitting the equipment may not be worth the expense.

Reliability, Repairs and Maintenance

Emergency generators are installed for very good reasons, to back up critical electrical needs. If proper maintenance is being performed and failures are popping up regularly the confidence in the equipment to operate when needed erodes. The more critical the need, the more reliable the emergency generator needs to be.

The costs associated with repairs and the risk of unreliable equipment will ultimately outweigh the price of a new generator system.

Older generators should also receive a regular load bank test to insure the integrity of the entire system to carry its name plated load. As equipment ages or facility upgrades are made that could reduce the operating characteristics of the equipment the generator may not be able to handle its intended load.

Increased Capacity Needs- 

As buildings age new equipment may be installed. This new equipment may require increased demands on the generator system. Any time loads are added to a building that needs to be backed via the emergency generator; a load study should be completed to insure that the generator can continue to operate as intended. If the load study shows the existing generator can handle the additional load you can be assured that your generator is capable of doing its job when you need it. If not you will either need to shed other loads or consider a larger generator system.

Increased need for operational knowledge-

Modern generators and electrical switchgear have abilities to communicate their status. In critical applications remote monitoring and control may become desirable. Many modern generators also have the ability to tie into building management systems giving facility managers much better data about their equipment.

Going Green

Engine exhaust and noise emissions may become critical for an application. This could result from local code requirement enforcement to providing a better operating environment to the people that are situated close to an operating generator.

Modern engines emit significantly lower exhaust emissions than their predecessors. A desire to reduce exhaust emissions can be derived for many reasons including changing local requirements, EPA regulations limiting run time and a company’s desire to be identified as a “green” company.

Noise is also considered an undesirable effect from operating a generator. Modern enclosure designs can significantly reduce noise levels.

Fuel Considerations

In the case of diesel generators fuel storage can be an issue. Diesel fuel can deteriorate over time and cause performance issues with engines.

Diesel fuel storage can also be influenced by local regulations or the local Fire Marshall. In some cases it may be desired to extend the potential run time of the generator in the event that long power outages may occur. Local requirements may limit the amount of diesel fuel that can be stored on site.

In recent years natural gas fueled or Bi-Fueled (operates on a combination of diesel and natural gas) generators in larger size ranges have become commercially viable. A desire to move to natural gas can be a motivation.

Long Term Budgets

Replacing a generator can be expensive. As part of a long term capital improvement project the generator system can be replaced as budgets may allow.

Conclusions

In almost all cases a capital investment in a generator system can last for many, many years. As time and requirements take a toll on existing equipment it may make sense to modernize the emergency generator system. In critical applications it is imperative to insure a well-functioning backup solution that can be managed as appropriate by the facilities management team. Sometimes it makes sense to look at replacing old equipment.

Clifford Power is an Authorized Generac® Industrial Power Dealer

Generac means innovation whether you’re considering, specifying, or installing a power system.  Generac provides single generator sets up to 2 MW including multi-megawatt paralleling solutions, Gemini® power systems, with two generators stacked in a single enclosure for amazing space savings. And Generac’s Bi-Fuel™ generators, the only ones fully integrated—and EPA compliant—straight from the factory.  Add tools like Power Design Pro™, among the most powerful electrical and mechanical design and sizing software on the market. It’s easy to see why virtually every industry puts their power needs in the hands of Generac.

 

http://www.cliffordpower.com/when-does-it-make-sense-to-replace-an-emergency-generator-system

5 Signs You Need To Replace Your Generator

If you’ve already purchased a generator, you know how essential they can be if the power goes out during a winter storm. Without electricity, you’d either have to try to figure out how to make do, or else you’d need to try to make your way to a friend or to a relative who has working electricity. Both of these options can be dangerous or even outright impossible depending on current conditions. This is likely why you got a generator in the first place.

Unfortunately, generators don’t last forever. At some point, you’re going to have to purchase a new generator to replace the one that you have now. It doesn’t matter whether you bought the cheapest generator that would work or the most expensive one that you could afford – all of them will need to be replaced at some point, just like any other appliance.

But telling when you need to replace your generator isn’t always easy. If you’ve been following proper generator maintenance practices, you are unlikely to need a new generator just yet. Regardless, you should still keep the following things in mind so that you know when you should be getting a new generator:

Age

The older anything is, the more likely it is to fail. Ultimately, the age of a generator isn’t necessarily determined by its physical age but by how many hours it gets used every year. The average standby generator has been designed to last for 10,000 to 30,000 hours of use.

If you frequently lose power and have to use your generator, you will need to replace your generator sooner than someone who only runs their generator once or twice a year. For light-duty use, expect a properly maintained generator to last about thirty years.

Too many repairs

Aside from preventative maintenance to ensure that the generator is functioning correctly, you should not have to repair your generator more than perhaps once or twice a year.

If you find that your generator is breaking down almost every time that you use it, then it’s time to get a new one. If your generator is still only a few years old, check to see whether or not it’s still under any sort of warranty.

Problems starting up

A brand-new generator should start up quickly when needed. If you have a system where the generator is supposed to come on automatically when the power goes out, you shouldn’t have to go out and fiddle with the generator to get it to start unless it has somehow run out of fuel. Once or twice could simply be something that can be repaired. More than that, especially within the same year, and you should start looking for a replacement.

Excessive fuel usage

Your generator’s manual should provide information on expected fuel consumption. If your generator hasn’t been properly maintained or if it’s starting to wear out due to age, this fuel usage will start to rise. Some parts may be able to be repaired or replaced, but the whole generator will eventually need to be swapped for a new one.

Variable power output

Obviously, one of the reasons why you got a generator is so that you can have steady power. If you are using the same appliances and devices that you always have and yet the power flickers or you experience brownouts while using the generator. It may simply need to have a part replaced, but this is still a sign that your generator may be nearing the end of its life.

Now is the best time to make sure that you have a working generator for the winter season. Aside from changing oil or air filters as specified in your user manual, please don’t try to service a generator yourself. Call a professional to safely give it a look.

 

https://oakelectric.com/2017/07/5-signs-you-need-to-replace-your-generator/

Generators – Working, Types & Advantages

Generator is a machine that converts mechanical energy into electrical energy. It works based on principle of faraday law of electromagnetic induction. The faradays law states that whenever a conductor is placed in a varying magnetic field, EMF is induced and this induced EMF is equal to the rate of change of flux linkages. This EMF can be generated when there is either relative space or relative time variation between the conductor and magnetic field. So the important elements of a generator are:

  • Magnetic field
  • Motion of conductor in magnetic field

Working of Generators:

Generators are basically coils of electric conductors, normally copper wire, that are tightly wound onto a metal core and are mounted to turn around inside an exhibit of large magnets. An electric conductor moves through a magnetic field, the magnetism will interface with the electrons in the conductor to induce a flow of electrical current inside it.

Working of Generators

The conductor coil and its core are called the armature, connecting the armature to the shaft of a mechanical power source, for example an motor, the copper conductor can turn at exceptionally increased speed over the magnetic field.

The point when the generator armature first starts to turn, then there is a weak magnetic field in the iron pole shoes. As the armature turns, it starts to raise voltage. Some of this voltage is making on the field windings through the generator regulator. This impressed voltage builds up stronger winding current, raises the strength of the magnetic field. The expanded field produces more voltage in the armature. This, in turn, make more current in the field windings, with a resultant higher armature voltage. At this time the signs of the shoes depended on the direction of flow of current in the field winding. The opposite signs will give current to flow in wrong direction.

Types of Generators:

The generators are classified into types.

  • AC generators
  • DC generators

AC Generators:

These are also called as alternators. It is the most important means of producing electrical power in many of the places since now days all the consumers are using AC. It works based on principle of the electromagnetic induction. These are of two types one is induction generator and other one is synchronous generator. The induction generator requires no separate DC excitation, regulator controls, frequency control or governor. This concept takes place when conductor coils turn in a magnetic field actuating a current and a voltage. The generators should run at a consistent speed to convey a stable AC voltage, even no load is accessible.

Synchronous generators are large size generators mainly used in power plants. These may be rotating field type or rotating armature type. In rotating armature type, armature is at rotor and field is at stator. Rotor armature current is taken through slip rings and brushes. These are limited due to high wind losses. These are used for low power output applications. Rotating field type of alternator is widely used because of high power generation capability and absence of slip rings and brushes.

It can be either 3 phase or two phase generators. A two-phase alternator produces two completely separate voltages. Each voltage may be considered as a single-phase voltage. Each is generated voltage completely independent of the other. The three-phase alternator has three single-phase windings spaced such that the voltage induced in any one phase is displaced by 120º from the other two. These can be connected either delta or wye connections. In Delta Connection each coil end is connected together to form a closed loop. A Delta Connection appears like the Greek Letter Delta (Δ). In Wye Connection one end of each coil connected together and the other end of each coil left open for external connections. A Wye Connection appears as the letter Y.

These generators are packaged with an engine or turbine to be used as a motor-generator set and used in applications like naval, oil and gas extraction, mining machinery, wind power plants etc

Advantages of AC Generator:

  • These Generators are generally maintenance free, because of absence of brushes.
  • Easily step up and step down through transformers.
  • Transmission link size might be thinner because of step up feature
  • Size of the generator relatively smaller than DC machine
  • Losses are relatively less than DC machine
  • These Generator breakers are relatively smaller than DC breakers

DC Generators:

DC generator is typically found in off-grid applications. These generators give a seamless power supply directly into electric storage devices and DC power grids without novel equipment. The stored power is carries to loads through dc-ac converters. The DC generators could be controlled back to an unmoving speed as batteries tend to be stimulating to recover considerably more fuel.

Classification of DC Generators

D.C Generators are classified according to the way their magnetic field is developed in the stator of the machine.

  • permanent-magnet DC generators
  • Separately-excite DC generators and
  • Self-excited DC generators.

Permanent magnet DC generators do not require external field excitation because it has permanent magnets to produce the flux. These are used for low power applications like dynamos. Separately-excite DC generators requires external field excitation to produce the magnetic flux. We can also vary the excitation to get variable output power. These are used in electro plating and electro refining applications. Due to residual magnetism present in the poles of the stator self-excited DC generators can able to produce their own magnetic field ones it is started. These are simple in design and no need to have the external circuit to vary the field excitation. Again these self-excited DC generators are classified into shunt, series, and compound generators.

These are used in applications like battery charging, welding, ordinary lightening applications etc.

Advantages of DC Generator:

  • Mainly DC machines have the wide variety of operating characteristics which can be obtained by selection of the method of excitation of the field windings.
  • The output voltage can be smoothed by regularly arranging the coils around the armature .This leads to less fluctations which is desirable for some steady state applications.
  • No shielding need for radiation  so cable cost will be less as compared to AC.

 

https://www.elprocus.com/working-of-generators/

Generators

If you’ve ever moved paper clips around with a magnet or killed time arranging metal shavings into a beard on a “Wooly Willy” toy, then you’ve dabbled in the basic principles behind even the most complicated electric generators. The magnetic field responsible for lining up all those little bits of metal into a proper Mohawk haircut is due to the movement of electrons. Move a magnet toward a paper clip and you’ll force the electrons in the clip to move. Similarly, if you allow electrons to move through a metal wire, a magnetic field will form around the wire.

Thanks to Wooly Willy, we can see that there’s a definite link between the phenomena of electricity and magnetism. A generator is simply a device that moves a magnet near a wire to create a steady flow of electrons. The action that forces this movement varies greatly, ranging from hand cranks and steam engines to nuclear fission, but the principle remains the same.

One simple way to think about a generator is to imagine it acting like a pump pushing water through a pipe. Only instead of pushing water, a generator uses a magnet to push electrons along. This is a slight oversimplification, but it paints a helpful picture of the properties at work in a generator. A water pump moves a certain number of water molecules and applies a certain amount of pressure to them. In the same way, the magnet in a generator pushes a certain number of electrons along and applies a certain amount of “pressure” to the electrons.

In an electrical circuit, the number of electrons in motion is called the amperage or current, and it’s measured in amps. The “pressure” pushing the electrons along is called the voltage and is measured in volts. For instance, a generator spinning at 1,000 rotations per minute might produce 1 amp at 6 volts. The 1 amp is the number of electrons moving (1 amp physically means that 6.24 x 1018 electrons move through a wire every second), and the voltage is the amount of pressure behind those electrons.

Generators form the heart of a modern power station. In the next section, we’ll take a look at how one of these stations works.

Everything You Need To Know About LED Lighting

A diode is an electrical device or component with two electrodes (an anode and a cathode) through which electricity flows – characteristically in only one direction (in through the anode and out through the cathode). Diodes are generally made from semiconductive materials such as silicon or selenium – substances that conduct electricity in some circumstances and not in others (e.g. at certain voltages, current levels, or light intensities).

  1. What is LED Lighting?

A light-emitting diode is a semiconductor device that emits visible light when an electrical current passes through it. It is essentially the opposite of a photovoltaic cell (a device that converts visible light into electrical current).

Did You Know? There is a similar device to an LED called an IRED (Infrared Emitting Diode). Instead of visible light, IRED devices emit IR energy when electrical current is run through them.

  1. How Do LED Lights Work?

It’s really simple actually, and very cheap to produce…which is why there was so much excitement when LED lights were first invented!

The Technical Details: LED lights are composed of two types of semiconducting material (a p-type and an n-type). Both the p-type and n-type materials, also called extringent materials, have been doped (dipped into a substance called a “doping agent”) so as to slightly alter their electrical properties from their pure, unaltered, or “intrinsic” form (i-type).

The p-type and n-type materials are created by introducing the original material to atoms of another element. These new atoms replace some of the previously existing atoms and in so doing, alter the physical and chemical structure. The p-type materials are created using elements (such as boron) that have less valence electrons than the intrinsic material (oftentimes silicon). The n-type materials are created using elements (such as phosphorus) that have more valence electrons that the intrinsic material (oftentimes silicon). The net effect is the creation of a p-n junction with interesting and useful properties for electronic applications. What those properties are exactly depends mostly on the external voltage applied to the circuit (if any) and the direction of current (i.e. which side, the p-type or the n-type, is connected to the positive terminal and which is connected to the negative terminal).

Application of the Technical Details to LED Lighting:

When an light-emitting diode (LED) has a voltage source connected with the positive side on the anode and the negative side on the cathode, current will flow (and light will be emitted, a condition known as forward bias). If the positive and negative ends of the voltage source were inversely connected (positive to the cathode and negative to the anode), current would not flow (a condition known as reverse bias). Forward bias allows current to flow through the LED and in so doing, emits light. Reverse bias prevents current from flowing through the LED (at least up until a certain point where it is unable to keep the current at bay – known as the peak inverse voltage – a point that if reached, will irreversibly damage the device).

While all of this might sound incredibly technical, the important takeaway for consumers is that LEDs have changed the lighting landscape for the better, and the practical applications of this technology are almost limitless.

 

http://www.stouchlighting.com/blog/all-about-led-lighting-what-does-led-stand-for